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Abstract

Bayesian nonparametric models have proven to be successful tools for clustering and
density estimation. While there exists a nourished ecosystem of implementations in R,
for Python there are only a few. Here we develop a Python package called pyrichlet, for
Bayesian nonparametric density estimation and clustering using various state-of-the-art
Gaussian mixture models that generalize the well established Dirichlet process mixture,
many of which are fairly new. Implementation is performed using Markov chain Monte
Carlo techniques as well as variational Bayes methods. This article contains a detailed
description of pyrichlet and examples for its usage with a real dataset.

Keywords: density estimation, clustering, random partitions, Gaussian mixture, Dirichlet pro-
cess, geometric process, Pitman-Yor, Python.

1. Introduction

Bayesian nonparametric (BNP) methods provide versatile and elegant solutions for modeling
complex data structures where parametric methods do not provide sufficient flexibility (Hjort,
Holmes, Müller, and Walker 2010). In particular, Gaussian mixture models (GMM) represent
one of the most successful applications of BNP methods for clustering and density estimation.
Broadly speaking, GMM consist of components identified by a unique Gaussian distribution
and a mixing proportion or weight. Each observation is then assumed to be drawn from
one of these Gaussian distributions with probability determined by the corresponding weight.
Frequentist inference usually proceeds by maximizing the likelihood (Xu and Jordan 1996;
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Pernkopf and Bouchaffra 2005; Vila and Schniter 2013), in contrast Bayesian methods assign a
prior to the mixing distribution, which is a discrete random probability measure whose atoms
and their sizes represent the component parameters and weights, respectively. A natural
choice to attain conditional conjugacy is to assign a Normal-Inverse Gamma or Normal-Inverse
Wishart prior to the Gaussian parameters, as for the weights the semi-parametric approach
commonly assumes the number of components is known and assigns a Dirichlet prior to the
weighting structure (e.g., Ishwaran and James 2000). Instead, BNP methods consider mixing
distributions with infinitely many number of support points and infer about the number of
components through the number of clusters of data points. This plays a key role in the success
of BNP methods, as the number of components is rarely known in advance. The canonical
example of BNP Gaussian mixtures is the Dirichlet process mixture (DPM) (Ferguson 1983;
Lo 1984). Other well-known examples are the Pitman-Yor process mixture (PYM) (Pitman
and Yor 1997; Ishwaran and James 2001), which generalizes the DPM, and the geometric
process mixture (GPM) introduced by Fuentes-García, Mena, and Walker (2010). Although
the DPM and PYM models are very good at fitting complex weighting structures, which
makes them appealing for clustering purposes, the GPM is faster for density fitting. Recently,
generalizations and interpolations of DPM and GPM have been have been proposed (cf.
Gil–Leyva, Mena, and Nicoleris 2020; Gil-Leyva and Mena 2021).

While BNP models provide an increased flexibility, they are also more challenging to imple-
ment as one has to deal with an infinite model dimension. One approach to perform posterior
inference is to design a Markov chain Monte Carlo (MCMC) method aimed at drawing sam-
ples from the posterior distribution. For the DPM and PYM there are various Gibbs sampler
variants that can be used, in particular the so-called marginal methods (e.g., Escobar and
West 1995; Neal 2000) exploit the generalized Pólya urn scheme representation of the model
(Blackwell and MacQueen 1973; Pitman 2006). Unfortunately, this representation is not
available for most prior choices such as the ones introduced by Fuentes-García et al. (2010);
Gil–Leyva et al. (2020); Gil-Leyva and Mena (2021). Alternatively, one can rely on a condi-
tional Gibbs sampler, such as the Slice sampler by Walker (2007); Kalli, Griffin, and Walker
(2011), which is more widely implementable and has important computational advantages
in big-data settings (Gelfand and Kottas 2002). A different approach to perform posterior
inference is offered by variational Bayes (VB) methods which approximate the posterior dis-
tribution using simplified distributions with a tractable form (Blei and Jordan 2006). The
package pyrichlet implements all the considered BNP and finite models by means of a Slice
sampler; additionally, many also include a VB implementation.

There is a nourished ecosystem of packages written for the statistical programming language
R which can be used to do density estimation or clustering but only a few of them imple-
ment BNP models. Some examples are BNPmix (Corradin, Canale, and Nipoti 2021) mainly
written in C++ which has density estimation and clustering capabilities by using the DPM
and PYM models. In mclust (Scrucca, Fop, Murphy, and Raftery 2016) the expectation-
maximization (EM) algorithm is used to fit a finite GMM with a varying number of com-
ponents and with optimizations written in Fortran. The dirichletprocess package (Ross and
Markwick 2020) can be used to implement multivariate Gaussian mixtures under a DPM
model using MCMC. Also bayesm (Rossi 2019), which is optimized in C++, has an MCMC
implementation for the Dirichlet Distribution Mixture (DDM) model. Regarding DPpack-
age (Jara, Hanson, Quintana, Mueller, and Rosner 2011), despite its broad usage and its
implementations for several BNP models based on the DP, it has been archived due to system
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Methods Models
Packages MCMC Variational/EM Finite GMM BNP GMM
R packages
BNPmix ✓ × × ✓
mclust × ✓ ✓ ×
dirichletprocess ✓ × × ✓
bayesm ✓ × × ✓
DPpackage ✓ × × ✓
PReMiuM ✓ × ✓ ✓
BayesMixR ✓ × ✓ ✓

Python packages
scikit-learn × ✓ ✓ ✓
mixes × ✓ ✓ ×
Mixture-Models × ✓ ✓ ×
BayesMixPy ✓ × ✓ ✓
pyrichlet ✓ ✓ ✓ ✓

Table 1: Comparative table of R and Python packages

I/O calls coded directly in Fortran. Lastly for R, the package PReMiuM (Liverani, Hastie, Az-
izi, Papathomas, and Richardson 2015) was developed to carry out mainly response-covariate
profile regressions with Gaussian, discrete or mixed covariate data, and a binary, categorical,
count or continuous response by fitting a DPM model; although users can also choose to
exclude the response variable from the model, thus returning to a non-response DPM model.
For Python there are not many packages with features that are comparable to those of R,
being scikit-learn (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Pret-
tenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, and Duches-
nay 2011), to the best of our knowledge, the only native and well documented library for
performing density estimation and clustering using BNP Gaussian mixtures. The packages
mixes citepDmytruk2022 and Mixture-Models (Kasa 2022; Kasa and Rajan 2020) can be used
to do density estimation and clustering by maximizing the likelihood of a finite Gaussian mix-
ture using EM and gradient descent with automatic differentiation respectively. Additionally,
the C++ library BayesMix (Beraha, Guindani, Gianella, and Guglielmi 2025) can be used to
fit finite and BNP mixtures using several of the MCMC algorithms described in Neal (2000),
and can be used in Python and R via the wrapper packages BayesMixPy (Beraha, Guindani,
Gianella, and Guglielmi 2023a) and BayesMixR (Beraha, Guindani, Gianella, and Guglielmi
2023b) respectively. In Table 1 we summarize the discussed packages.

2. Gaussian mixture models

2.1. Model specification

In mixture models we assume that data points, y = {y1, . . . , yN} with values in Rp, are
independent and identically distributed from a probability measure, Q, obtained by mixing
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a parametric family of distributions, {Kθ : θ ∈ Θ}, with respect to a discrete probability
measure, P:

Q (·) :=
∫

Kθ (·) P(dθ).

In particular, if Kθ = N ( · | µ, Σ) stands for a multivariate Normal distribution over (Rp,BRp),
with θ = (µ, Σ), then Q is termed a Gaussian mixture. In the Bayesian framework, the mixing
distribution, P, is considered to be random, and to fully specify the model it is enough to
assign a prior distribution to P. The most famous examples of mixture models feature a mixing
distribution that belongs to the general class of proper species sampling models introduced
and studied by Pitman (1996). These are discrete random probability measures over a Borel
space, (Θ,BΘ),

P (·) =
∞∑

j=1
wjδθj

(·), (1)

where the weighting structure, w := {wj}∞j=1, is independent of the atoms structure, θ :=
{θj}∞j=1, and the entries of θ are iid from a diffuse distribution G over (Θ,BΘ). When P
is as in (1) we can rewrite the mixture model as Q(·) = ∑∞

j=1 wj Kθj
(·), in this case to

specify the prior distribution of P, it is enough to choose G and assign a prior to w. Here,
in order to attain conjugacy between G and the Gaussian kernel Kθ, we consider G to be a
Normal-Inverse Gamma distribution for univariate data points and a Normal-Inverse Wishart
distribution for multivariate datasets. As for w, specifying its law is a more delicate issue.
First of all, it should be noticed that this sequence must take values in the simplex,

∆∞ =
{

(s1, s2, . . . ) : sj ≥ 0,
∑∞

j=1 sj = 1
}

,

in order for P to be a well-defined probability measure, and it is not straight-forward to define
distributions supported on ∆∞. Secondly, as explained by Bissiri and Ongaro (2014), it is an
essential requirement for posterior consistency that the weighting structure defines a proper
species sampling process with full support. Loosely speaking it is required that the (weak
topological) support of P is the biggest possible (only constrained by the set of probability
measures, µ, whose support is contained in the support G). For clustering estimation no
such requirement exists since BNP models such as the DPM and PYPM do not guarantee
consistency (Miller and Harrison 2014). A third reason of why choosing the prior of w must
be taken with care is that it determines the prior behavior of the clustering of data points.
To explain this, first note that in mixture models we can equivalently assume that the data
points are independently sampled from yi | xi

ind∼ Kxi(·), where {xi}Ni=1 are conditionally iid
from P given P. Under this statement of the model we can introduce the allocation variables,
d = {di}Ni=1, given by di = j if and only if xi = θj , and define the equivalence relation
i ∼d l if and only if di = dl. This way d induces a clustering of the (indexes of) observations
according to which component of the mixture they were sampled from, and it holds that
di | w iid∼

∑∞
j=1 wjδj , i.e., P[di = j | w] = wj . Denoting by ΠN the partition of {1, . . . , N}

induced by ∼d we get

P[ΠN = {A1, . . . , Ak}] =
∑

(j1,...,jk)
E
[

k∏
l=1

w
|Al|
jl

]
, (2)

for every partition {A1, . . . , Ak} of {1, . . . , N}, where |Al| denotes the cardinality of Al, and
the sum ranges over all k-tuples, (j1, . . . , jk), of distinct positive integers (cf. Pitman 2006).
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It is then clear by (2) that the prior distribution of the clustering structure is completely
determined by the law of w. However it is not easy to understand in detail how will the
latter affect the clustering estimation. For this reason pyrichlet offers a wide variety of prior
choices for w, among which the user can select. All the BNP models considered here are
well-defined, i.e., ∑∞

j=1 wj = 1; all feature a mixing prior with full support, and they enjoy a
simple stick-breaking decomposition, as described next.

Stick-breaking weighting structures

The stick-breaking decomposition (Sethuraman 1994; Ishwaran and James 2001) translates
the problem of defining a distribution supported in ∆∞, into the simpler one of defining the
law of a sequence of sticks, v = {vj}∞j=1, by decomposing

w1 = v1, wj = vj

j−1∏
k=1

(1− vk), j ≥ 2. (3)

To assure that the mapping

SB(v) = SB(v1, v2, . . .) 7→ (v1, v1(1− v2), . . .) = w

defines a valid weighting structure it is enough to require ∑∞
j=1 vj = ∞ or vj = 1 for some

j ≥ 1. Indeed, noticing that ∑n
j=1 wj = 1 − ∏n

j=1(1 − vj), it is clear that ∑∞
j=1 wj = 1 if

and only if limn→∞
∏n

j=1(1− vj) = 0, which in turn occurs when ∑∞
j=1 vj =∞ or vj = 1 for

some j ≥ 1. Additionally, Bissiri and Ongaro (2014) showed that, in terms of the sticks, it is
enough to require that for every ε > 0 there exist 0 < γ < ε such that

P[γ < vj < ε, for all j ∈ {1, . . . , n}] > 0

for each n ≥ 1, in order for P to have full support.
The canonical example of a species sampling processes, P, in BNP statistics is the Dirichlet
Process (Ferguson 1973; Sethuraman 1994) with total mass parameter b > 0. It arises when
the sticks, v, are iid from a Beta(1, b) distribution (vj

iid∼ Beta(1, b)). The Dirichlet process is
a very tractable model and various distinct representations are available (cf. Ferguson 1973;
Regazzini, Lijoi, and Prünster 2003; Blackwell and MacQueen 1973; Pitman 2006; Hjort et al.
2010), which explains why it plays such an important role in the BNP literature.
Relaxing the identical distribution assumption and keeping the independence on v elements,
we find the two-parameter Pitman-Yor Process (Pitman and Yor 1997; Ishwaran and James
2001), where vj

ind∼ Beta(1 − a, b + ja). Evidently the choice a = 0 recovers a Dirichlet
process. In contrast to the weights of Dirichlet processes, Pitman-Yor weights decay at a
slower rate and thus PYPM are more prone to estimate a larger number of clusters of data
points, according to the mixture component they were sampled from.
Another direction to define different stick-breaking processes is to keep the identical distri-
bution assumption and relax the independence one. In this scenario we find the Geometric
Process, first introduced by Fuentes-García et al. (2010), and obtained by setting vj = v
for every j ≥ 1 and some random variable v ∼ Beta(a, b), so that the weights become
wj = v(1− v)j−1. In contrast to DPM and PYPM, GPM tends to perform worse for cluster-
ing purposes, nonetheless, it has been observed that for density estimation they can capture
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details that some DPM struggle to do. This has recently motivated the study stick-breaking
species sampling processes, P, where v forms an exchangeable sequence (Gil-Leyva and Mena
2021) or a Markov process (cf. Gil–Leyva et al. 2020), as both classes generalize Dirichlet and
geometric processes simultaneously. In particular, (Gil-Leyva and Mena 2021) studied the
general case where v is exchangeable, and gave sufficient conditions so that P is well-defined
and has full support. Following their work, here we consider a model where vj | P′ iid∼ P′,
and P′ is a Dirichlet process over ([0, 1],B[0,1]) with atoms distribution G′ = Beta(a, b) and
total mass parameter b′. In this case we term the main species sampling process, P over
(Θ,BΘ) a Beta in Dirichlet Process with parameters a, b, b′ > 0. As proven by Gil-Leyva and
Mena (2021), as b′ → 0, P approximates in distribution a Geometric process; and if a = 1,
as b′ → ∞, P approximates in distribution a Dirichlet process with total mass parameter
b. Additionally, we will consider a second exchangeable stick-breaking process, where given
v ∼ Beta(a, b) the sticks satisfy

vj | v
iid∼ Beta

(
a + x

1− x
v, b− x

1− x
(1− v)

)
,

with a, b > 0 and 0 ≤ x < 1. In this case we call the species process, P, a Beta in Beta Process.
Note that the choice x = 0 recovers a Dirichlet process and as x→ 1, P approximates weakly
a Geometric process Selva (2020). On the Markov counterpart, we have implemented a Beta-
Binomial Process, P, introduced and studied by Gil–Leyva et al. (2020). For this model the
law of the sticks can be described through

Bj | vj−1 ∼ Binomial(n, vj−1), vj | Bj ∼ Beta(a + Bj , b + (n−Bj)),
where v0 ∼ Beta(a, b), a, b > 0 and n ∈ Z+. Thus, it follows from the Beta-Binomial conjugate
model that after marginalizing out {Bj}∞j=1, we obtain a Markov chain, v, with stationary
distribution Beta(a, b). Moreover, under the convention Binomial(0, p) = δ0, for the choice
n = 0, P becomes a Dirichlet process, and as proven by Gil–Leyva et al. (2020), as n → ∞,
P converges in distribution to a Geometric process.
The pyrichlet package also implements some models that do not lay in the BNP realm. In par-
ticular, we have considered the Dirichlet Distribution Mixture: a Bayesian (semi-parametric)
model whose mixing distribution, P, has a finite number, n ∈ Z+, of support points (i.e.,
wj = 0 for every j > n); and Dirchlet distributed weights (w1, . . . , wn) ∼ Dir(α), where the
concentration parameter is defined by α := (α1, . . . , αn). Unfortunately, P does not have full
support in this case, nonetheless, if αj = b/n for some b > 0, then by making n→∞, the dis-
tribution P resembles that of a Dirichlet process with total mass parameter b > 0 (Blackwell
and MacQueen 1973). It means that if n is large enough, this model will behave similarly
to one that does has a mixing prior with full support. The two other models proposed are
limiting cases of the Dirichlet Distribution Mixture when the parameter α tends to zero and
to infinity respectively. For this three models an exploratory analysis over the number of
components can be carried as in McKenzie and Alder (1994), and, depending on the length
selection method, consistency can be regained.

2.2. Implementation methods
As mentioned in Section 2.1 we can describe the mixture model through

yi | (θ, di) ind∼ Kθdi
, di | w

iid∼
∞∑

j=1
wjδj , θj

iid∼ G, w ∼ f(w) (4)
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where f(w) refers to the prior law of the weighting structure. This means that the joint
distribution factorizes as

f(y, d, θ, w) =
(

N∏
i=1

f(yi | θdi
)f(di | w)

)
f(θ)f(w)

=
(

N∏
i=1

wdi
Kθdi

(yi)
)

f(θ)f(w),
(5)

assuming Kθdi
has a density, denoted by the same symbol, with respect to the Lebesgue

measure. In general the posterior distribution, f(d, θ, w | y) ∝ f(y, d, θ, w), can not be
computed explicitly, and BNP models have the additional challenge of having an infinite
dimensional support. To make their fitting possible, various methods have been derived.
In particular MCMC techniques, such as Gibbs samplers (cf. Escobar and West 1995; Neal
2000; Walker 2007; Kalli et al. 2011) consist in constructing a stationary Markov chain whose
invariant measure is f(d, θ, w | y). This way, after choosing a suitable initialization point
and allowing the chain to evolve long enough, one can obtain samples from f(d, θ, w | y) and
estimate quantities of interest through measurable functions of the sampled variables. Instead
VB techniques (Jordan, Ghahramani, Jaakkola, and Saul 1999; Opper and Saad 2001; Blei and
Jordan 2006) approximate the posterior distribution f(d, θ, w | y) by means of a distribution
g ∈ G, that minimizes the Kullback-Leiber divergence among a class of proposals, G, with a
simplified tractable form. Then quantities of interest can be estimated through functionals
of the variational distribution g. Next we describe the MCMC and VB variants available in
pyrichlet for the implementation of Gaussian mixture models.

Gibbs sampling with slices

To motivate the Slice sampler, consider the mixture model description in (4) and assume
that the model dimension, n, is a finite fixed number, i.e., wj > 0 for j ≤ n and wj = 0 for
each j > n. In this setting a simple Gibbs sampling algorithm would consist in consecutively
drawing samples from the full conditionals:

f(di | · · · ) ∝ Kθdi
(yi) wdi

1(di ∈ {1, . . . , n}), i ∈ {1, . . . , N},

f(θj | · · · ) ∝ G(θj)
∏

i∈Dj

Kθj
(yi), j ∈ {1, . . . , n},

f(w | · · · ) ∝ f(w)
n∏

j=1
w

|Dj |
j ,

which are proportional to (5), where Dj = {i : di = j}. For example, if f(w) = Dir(w |
α1, . . . , αn) then f(w | · · · ) = Dir(w | α1 + |Dj |, . . . , αn + |Dn|); and if G and K form a
conjugate pair, then sampling from f(θj | · · · ) is easy. In particular, if Kθj

is a Gaussian kernel
N (· | µj , Σj) with θj = (µj , Σj), and G stands for a Normal-Inverse Wishart distribution with
hyperparameters (m0, λ0, Ψ0, ν0), we find f(θj | · · · ) = f(µj , Σj | · · · ) is also a Normal-Inverse
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Wishart distribution with updated parameters

λj = λ0 + nj ,

mj = λ−1
j (λ0m0 + njyj),

Ψj = Ψ0 + njSj + λ−1
j λ0nj(yj −m0)(yj −m0)⊤,

νj = ν0 + nj ,

where nj = |Dj |, yj = n−1
j

∑
i∈Dj

yi, Sj = n−1
j

∑
i∈Dj

(yi − yj)(yi − yj)⊤. Notice that if the
model dimension n is infinite, the aforementioned Gibbs sampler is not feasible to implement
as it is not possible to draw samples from the complete sequences θ and w, which are necessary
for the subsequent update of d. To overcome this, various Gibbs sampler variants have been
derived (cf. Neal 2000), in particular Walker (2007) proposed to introduce latent variables,
u = {ui}ni=1, yielding the augmented joint distribution

f(y, d, u, θ, w) =
(

N∏
i=1

f(yi | θdi
)f(di | ui, w)f(ui | w)

)
f(θ)f(w)

=
(

N∏
i=1

Kθdi
(yi)1{wdi

> ui}
)

f(θ)f(w),
(6)

with f(di | w, ui) = 1{wdi
> ui}

(∑∞
j=1 1{wj > ui}

)−1
and f(ui | w) = ∑∞

j=1 1{wj > ui}.
Integrating out u from (6) one recovers (5), the advantage of working with the latter is that
the problem of sampling infinitively many random variables is translated into that of sampling
a random number of them.
Unlike other fitting methods, the slice sampler avoids truncating the infinite dimensional
weighting structure, yielding an exact method that does not distort the model. However,
this method can suffer from slow iteration times caused by the size of the sliced groups,∑∞

j=1 1{wj > min ui}, being too large. This in turn means that at some iterations a very
large number of weights need to be updated, in which case a truncated model might be
faster to fit. The sliced groups’ size depends both on the number of observations and on
the dynamics of the weighting model, but the weighting structure exerts a greater influence.
This problem has been observed in the Pitman-Yor process for large values of the discount
parameter (cf. Canale, Corradin, and Nipoti 2022) since the stick lengths vj lean towards zero
when the discount parameter is positive, translating in ever bigger. The rest of the models
implemented in this package do not exhibit this behavior due to the stationarity of v.
Following Kalli et al. (2011), pyrichlet implements the so called efficient-slice sampler that
works with the following conditionals:

f(di | · · · ) ∝ Kθdi
(yi)1{wdi

> ui} i ∈ {1, . . . , N},

f(θj | · · · ) ∝ G(θj)
∏

i∈Dj

Kθj
(yi), j ∈ {1, . . . , n},

f(u, w | · · · ) ∝ f(w)
N∏

i=1
1{wdi

> ui}.

Here f(θj | · · · ) is identical as before, and f(di | · · · ) is a discrete distribution with finite and
non-empty support, {j : wj > ui}, hence for Gaussian mixture models it is easy to sample
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Algorithm 1 Gibbs sampling with slices
procedure fit_gibbs(y)

N ← length(y)
Initialize {uj}Nj=1 with a Uniform(0, 1) distribution
Draw {wj}1≤j from the prior weighting model until ∑j

l=1 wl > 1−min{ui}Ni=1 holds
j∗ ← min{j |∑j

l=1 wl > 1−min{ui}Ni=1}
Initialize {dj}Nj=1 from the truncated weights {wj}1≤j≤j∗

Initialize {θj}j≥1 from the prior distribution of atoms
for s in 1 : total_iter do

Update existing atoms θ with the full conditional f(θ | y, u, d, w)
Update existing weights w with the full conditional f(w | y, u, d, θ) or f(w | y, d, θ)
Update u with the full conditional f(u | y, d, w, θ)
j∗ ← min{j |∑j

l=1 wl > 1−min{ui}Ni=1}
Complete any missing weights up to j∗ with the prior weighting model
Complete any missing atoms up to j∗ with the prior atom model
Update d with the full conditional f(d | y, u, d, w, θ)
Save state variables (u∗

s, d∗
s, w∗

s, θ∗
s) = (u, d, w, θ)

end for
end procedure

from both distributions. As for f(u, w | · · · ), we can first sample w from

f(w | · · · − u) ∝ f(w)
max d∏
j=1

w
|Dj |
j , (7)

which is obtained after integrating f(u, w | · · · ) with respect to u, and later sampling u from

f(u | · · · ) ∝
N∏

i=1
1{wdi

> ui},

a product of independent Uniform(0, wdi
) distributions. At this stage it only remains to

explain how to sample from (7). If the stick-breaking decomposition (3) is available, this can
be done via sampling the sticks, v, from

f(w | · · · − u) ∝ f(v)
max d∏
j=1

vai
j (1− bj)bj , (8)

with aj = |Dj | and bj = ∑
i>j |Di|. For example, if vj

iid∼ Beta(1, b), we update the sticks by
independently sampling vj ∼ Beta(1 + aj , b + bj).
For the remaining weighting structures, details on how to sample from (8) are provided in
Appendix A. It is worth highlighting that it is necessary to sample vj and θj for every j ≥ 1,
and it is enough to sample them up to the point where the updating algorithm for d can take
place, that is up to the first index J such that ∑J

j=1 wj ≥ maxi≤N (1−ui), after that it is not
possible that wj > ui for some j > J and i ≤ N .
In Algorithm 1 the complete procedure to draw samples of the model’s variables is given, this
variables allow us to estimate any quantity of interest if it can be derived from the posterior
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distribution of the variables. For example, if we wish to compute the posterior distribution
f(y | y), we can estimate it by recalling the saved state variables {(u∗

s, d∗
s, w∗

s, θ∗
s)}Ts=1, and

use them in the Monte Carlo method as

f(y | y) ≈
T∑

s=1
f(y | u∗

s, d∗
s, w∗

s, θ∗
s)/T,

approximating in this way the expected a posteriori (EAP) distribution function for a new
observation. It is customary to discard the first state variables to reduce the correlation with
the initialization parameters, also to take spaced out observations to reduce serial correlation
between variables. For our example this translates to

f(y | y) ≈
n∑

s=1
f(y | u∗

t+sl, d∗
t+sl, w∗

t+sl, θ∗
t+sl)/n, (9)

where t is the burn-in period of initial steps to be discarded, l is the spacing between iterations
and n = floor((T − t)/l).
We can also approximate the distribution function using the maximum a posteriori (MAP),
which can be estimated within the sampled Gibbs steps as

fMAP (y | y) ≈ f(y | u∗
s, d∗

s, w∗
s, θ∗

s), (10)

with
s = argmax

t∈{1,...,T }
f(y, u∗

t , d∗
t , w∗

t , θ∗
t ).

Mean-field variational Bayes

The variational Bayes method is a functional approach to approximate the posterior dis-
tribution f(d, θ, w | y) by means of a variational distribution g(d, θ, w). The mean-field
framework is a simplification over the search space of variational functions where we assume
independence between each parameter. This means that the variational distribution can be
factored as the product g(d, θ, w) = g(d)g(θ)g(w). Through this method we look to minimize
the following Kullback-Leiber (KL) divergence (Kullback and Leibler 1951)

KL(g(d)g(θ)g(w) || f(d, θ, w | y)) = Eg[log g(d)g(θ)g(w)− log f(d, θ, w | y)].

Since the KL divergence is not symmetrical, an order for the arguments must be chosen, and
since usually f(d, θ, w | y) is intractable (otherwise we wouldn’t be recurring to approxima-
tions), it is easier to calculate the expected values with respect to g and so the stated order
is preferred. Minimizing the KL divergence is equivalent to maximizing the evidence lower
bound

L(g) =Eg[log f(y, d, θ, w)− log g(d)g(θ)g(w)]
=Eg[log f(y | d, θ)]

+ Eg[log f(d | w)]− Eg[log g(d)]
+ Eg[log f(θ)]− Eg[log g(θ)]
+ Eg[log f(w)]− Eg[log g(w)].

(11)
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This maximization can be done using coordinate descent, optimizing each of the marginal
distributions g(d), g(θ) and g(w); one at a time, via the following relation for the optimal
distribution of g (Bishop 2006, p. 466),

log g(z) = Eg[log f(y, d, θ, w) | z] + const.,

which, after substituting the model variables yields,

g(d) ∝ expEg[log f(y | d, θ) + log f(d | w)], (12)
g(θ) ∝ expEg[log f(y | d, θ) + log f(θ)], (13)
g(w) ∝ expEg[log f(d | θ, w) + log f(w)]. (14)

Here we need to make another simplification. Since (12) defines a discrete distribution, all the
terms must be computed in order to find the normalizing variable which is not numerically
feasible. For this reason, a truncation (k) over the weighting structure is set such that
Pg[∑k

j=1 wj = 1] = 1, this is done over the stick breaking representation as Pg [vk = 1] = 1,
giving us the variational distribution for d,

g(d) =
N∏

i=1

k∏
j=1

r
1(di=j)
i,j ,

with ri,j = ρi,j/(∑k
l=1 ρi,l) and log ρi,j = Eg[log wj ]− 1

2Eg[log|Σj |]− 1
2Eg[(yi−µj)⊤Σ−1

j (yi−µj)].
This is a finite discrete distribution and taking means over it can be done with ease. Thanks
to the conjugacy of the Normal-Inverse Wishart we get that each element of θ is again a
Normal-Inverse Wishart distribution,

g(θ) =
k∏

j=1
NIW(θj | mj , λj , Ψj , νj),

with parameters

λj =λ + nj ,

mj =λ−1
j (λm + njyj),

Ψj =Ψ0 + njSj + λ−1
j λnj(yj −m)(yj −m)⊤,

νj =ν + nj .

here nj = ∑N
i=1 ri,j is the variational mean of elements assigned to the j’th component,

yj = n−1
j

∑N
i=1 ri,jyi is the variational mean of assigned elements and Sj = n−1

j

∑N
i=1 ri,j(yi −

yj)(yi − yj)⊤ is the variational variance. An explicit distribution for w can’t be given, but
the variational optimization follows the relation

g(w) ∝ f(w)
k∏

j=1
v

a′
j

j (1− vj)b′
j , (15)

which, as shown in Appendix B, has an analytic expression for most of the BNP models
here discussed, so we can refer instead to the parameters of the variational distributions
as the optimizing variational parameters. In particular for the Dirichlet process, using the
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Algorithm 2 Variational Bayes
procedure fit_variational(y)

k ← number of groups
iter ← 0
ELBO←∞
ELBO_change←∞
Initialize variational parameters with dimension k
while ELBO_change ≥ tolerance and iter<max_iter do

iter ← iter+1
Maximize the variational parameters of w
Maximize the variational parameters of θ
Maximize the variational parameters of d
Compute ELBO
ELBO_change ← previous_ELBO − ELBO.

end while
end procedure

optimization given by (15) reaches the same variational parameters as those found by Blei
and Jordan (2006).
In Algorithm 2 we give the pseudocode of the variational Bayes algorithm used to fit g(w),
g(θ) and g(d). Once we have approximated the optimal variational parameters, inference can
be done using the variational distribution as if it were the true posterior distribution of each
variable. As an example, we can estimate the posterior distribution of a new observation,
f(y | y), by replacing the posterior distribution

f(y | y) = E[f(y | d, θ) | y]
≈ Eg[f(ŷ | d, θ)],

and taking that last expected value with respect to the distribution g(d, θ) = g(d)g(θ).

3. Software design
The pyrichlet package is coded in the Python programming language and uses the packages
numpy (Harris et al. 2020) for numerical computations, scipy (Virtanen et al. 2020) for some
probabilistic functions, and pandas (McKinney 2010) DataFrame objects as an optional format
for reading user data. We divided it in two modules, weight_models, and mixture_models;
the former implements the code to update the conditional weighting structure f(w | d),
draw samples from it, and additionally for some models, compute the optimal variational
distribution g(w); the later implements a Gibbs sampler with three sampling steps: update
θ, update w and update d. A coordinate descent algorithm is performed to iteratively
update the optimal variational distributions for θ, w and d. This division was intended to
gain code modularity and to ease the development of new weighting model classes, from the
point of view of both the developer, and the user seeking to implement a weighting model
class child. Mixture model classes can be accessed directly from pyrichlet without importing
mixture_models. The weight_models module is only meant to be called internally, but is
left exposed for the user to explore and extend the package.
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Creating a mixture_models class object is straightforward, we need to import the package
and call the respective initialization,

>>> import pyrichlet
>>> import numpy as np
>>> rng = np.random.default_rng(0)
>>> mixture = pyrichlet.DirichletProcessMixture(rng=rng)

here we use the variable rng for results replication. The different classes found in the
mixture_models module are wrappers of the class BaseGaussianMixture and only differ in
the underlying weight_models class used, the parameters of a particular model are delegated
as named parameters to the mixture model initialization.
From a user point of view, the package main functions are the distinct methods of the
BaseGaussianMixture class. For doing density estimation these are gibbs_eap_density
and gibbs_map_density, which return the posterior density using Gibbs sampling; and
var_eap_density and var_map_density which return the variational posterior distribu-
tion. Meanwhile for clustering, the methods gibbs_eap_spectral_consensus_cluster,
gibbs_map_cluster, var_eap_spectral_consensus_cluster and var_eap_cluster return
a vector of labels. To be able to call any of the previous methods, either fit_gibbs or
fit_variational must be respectively ran before to fit the mixture model over a particular
dataset y. This sets the internal variable gibbs_fitted or var_fitted to True,

>>> y = np.concatenate([rng.normal(1, 1, size=100),
... rng.normal(4, 2, size=200)])
>>> y = y.reshape(300, -1)
>>> mixture.fit_gibbs(y, init_groups=2)
>>> mixture.var_fitted

False

>>> mixture.gibbs_fitted

True

here the fitting functions use the model hyperparameters defined on initialization, or if none
was defined, a default non informative value. After fitting, users can use any of the main
functions, for example,

>>> density = mixture.gibbs_eap_density([1, 2])
>>> density

array([0.16807104, 0.1917727 ])

which returns the EAP density at the locations {1, 2}.

3.1. Classes
There is a one to one relation between the classes in weight_models, and the implementing
mixture in mixture_models as seen in Table 2 which is an exhaustive list of all the classes in
pyrichlet.
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weight_models mixture_models

DirichletDistribution DirichletDistributionMixture
DirichletProcess DirichletProcessMixture
PitmanYorProcess PitmanYorMixture
GeometricProcess GeometricProcessMixture
BetaInBeta∗ BetaInBetaMixture
BetaInDirichlet∗ BetaInDirichletMixture
BetaBinomial∗ BetaBinomialMixture
FrequencyWeighting FrequencyWeightedMixture
EqualWeighting EqualWeightedMixture

Table 2: Classes in pyrichlet. The models marked with an asterisk do not have a variational
implementation

The classes in weight_models are implementations of the abstract class BaseWeight, and
classes in mixture_models initialize their respective weighting model class and pass it as an
argument to the constructor of the class BaseGaussianMixture.

3.2. Weighting models methods

All the weighting model classes are based on the abstract class BaseWeight, which has two ab-
stract methods: random(size) which returns a random draw of w up to the size’th element
using the prior or the posterior distribution (8) of the weighting model (see Appendix A) if
fit has already been called; and complete(size), which extends the length of w with obser-
vations from the prior. The class method fit_variational takes an array of the variational
distributions of d and calculates the optimal variational distribution w which particular ex-
pression can be found in Appendix B for the implementing models. After calling the previous
method, the following methods can be used

• variational_mean_w_j(j): Returns Eg[wj ].

• variational_mode_w_j(j): Returns the mode of g(wj).

• variational_mean_log_w_j(j): Returns Eg[wj ].

• variational_mean_log_p_d__w(): Returns Eg[log p(d | w)].

• variational_mean_log_p_w(): Returns Eg[log p(w)].

• variational_mean_log_q_w(): Returns Eg[log g(w)].

The constructor takes the hyperparameters of their weighting model as defined in Section 2.1
or in Appendix C.

3.3. Mixture models methods

The arguments for the initialization of a derived class of BaseGaussianMixture are: the
hyperparameters of the Normal-Inverse Wishart, the parameters for the Gibbs sampler or
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variational Bayes methods, a boolean, show_progress, to toggle the display of progress,
and a random state or seed, rng, to be able to replicate a particular result. Explicitly, the
arguments needed to initialize a BaseGaussianMixture class are:

• mu_prior: The centering parameter (m0) of the prior Normal-inverse Wishart distribu-
tion. It must be a float or an array depending on the dimension of the observations, its
default value is None. If equal to None, the sample mean of the observations passed to
the fit function will be used.

• lambda_prior: The precision parameter (λ0) of the prior Normal-inverse Wishart dis-
tribution. It must be a float, its default value is 1.

• psi_prior: The inverse scale matrix (Ψ0) of the prior Normal-inverse Wishart distri-
bution. It must be a float or a matrix depending on the dimension of the observations,
its default value is None. If equal to None, the sample variance-covariance matrix of the
observations passed to the fit function will be used.

• nu_prior: The degrees of freedom (ν0) of the prior normal-inverse Wishart distribution.
It must be a float, its default value is None. If equal to None, the dimension of the scale
matrix will be used.

• total_iter: The total number of steps to take in the Gibbs sampler algorithm or the
maximum number of steps to take in the coordinate descent algorithm. It must be an
integer, its default value is 1000.

• burn_in: The number of initial steps to discard in the Gibbs sampler before starting
to save the state parameters. It must be an integer, its default value is 100.

• subsample_steps: The number of steps to take in the Gibbs sampler before saving the
state parameters. It must be an integer, its default value is 1.

• show_progress: A flag to say whether to display the steps of the fitting method’s loop
or not. It must be a boolean, its default value is False.

• rng: The random state of the mixture, analogous to setting a seed in a pseudo-random
number generator algorithm. It must be an integer, its default value is None. If equal
to None, no seed is set.

Additionally, in any BaseGaussianMixture derived class, the parameters of its particular
base weighting model are needed.
The method fit_gibbs takes an array of observations as its input and runs a Gibbs sampler
as described in Algorithm 1. The optional arguments for this method are:

• init_groups: The maximum group label to assign to d in its initialization. The default
is to take the number of observations to fit as the maximum.

• warm_start: If the method is called a second time, this flag states whether to continue
the sampling process from a past run and assume that all the variables are already
initialized or to do a fresh start and forget any previously saved states.
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• show_progress: This flag serves the same purpose as its initialization counterpart and
is repeated here as an override.

• init_method: This is a string to choose the variable initialization method for d and is
one of:

– "random": The initialization is taken at random from the prior distribution.
– "kmeans": Runs a k-means clustering to define d.
– "variational": Fits a variational distribution and uses the MAP clustering as

the initialization.

The method fit_variational also takes an array of observations as its input and runs a
coordinate descent algorithm to optimize the variational distributions as described in Algo-
rithm 2. It’s optional arguments are:

• n_groups: The variational truncation parameter, k.

• warm_start: For subsequent calls, whether to take the previously fitted variational
distributions as the initialization, or to do a fresh start.

• show_progress: Same as for fit_gibbs.

• tol: The minimum change in ELBO between iterations needed to assume that the
optimization method has converged.

• method: A string to choose the variational initialization for d and one of:

– "kmeans": Runs a k-means clustering to define the initial distribution of d as a
constant variable.

– "random": Sets a discrete uniform distribution as the variational initialization.

After fitting using the Gibbs sampler, the user can access the class variable sim_params which
contains all the saved state variables as an array, to perform a Monte Carlo approximation
over a quantity of interest to get the EAP or MAP estimates as showed in (9) and (10);
or use the class variable map_sim_params, which is a dictionary with the set of parameters
that reached the highest model likelihood within the different sampled states. The analo-
gous class variables for the variational method are: var_d, which is an array of the discrete
variational probability distributions of d; var_theta, an array of parameters for a Normal-
inverse Wishart distribution corresponding to the fitted variational distribution of θ; and the
variational methods of the weighting model as described in Section 3.2.
Alternatively, the following methods can be used to draw some insights from the appropriate
fitted model over an array of locations y:

• gibbs_eap_density: Takes an array of locations and, optionally the number of state
parameters to use, and returns the EAP density estimation at those points.

• gibbs_map_density: Takes an array of locations and returns the MAP density estima-
tion at those points.
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• gibbs_eap_affinity_matrix: Takes an array of locations and returns the mean pos-
terior affinity matrix using the saved state variables d∗.

• gibbs_eap_spectral_consensus_cluster: Takes an array of locations and a number
of clusters and uses their EAP affinity matrix to perform spectral clustering returning
the resulting assignations.

• gibbs_map_cluster: Takes an array of locations and uses the MAP parameters to
estimate their clustering. Optionally a boolean full can be passed to return a tuple
with the clusters and assignation uncertainties.

• var_eap_density: Takes an array of locations and calculates their variational mean
density.

• var_map_density: Takes an array of locations and computes their variational mode
density.

• var_eap_affinity_matrix: Takes an array of locations and returns the posterior affin-
ity matrix using the variational probability of group matches.

• var_eap_spectral_consensus_cluster: Takes an array of locations and a number of
clusters and uses their variational EAP affinity matrix to perform spectral clustering
returning the resulting assignations.

• var_map_cluster: Takes an array of locations and returns their variational mode assig-
nations.

3.4. Extensibility

The user can extend the package to a new mixing model class with an arbitrary weighting
model f(w), and use a Gibbs sampler to fit its posterior by implementing a derived class of
BaseWeight and passing it to the constructor of BaseGaussianMixture. This can be done by
deriving the conditional distribution f(w | d) and use it to implement the methods __init__,
random and complete. To be able to fit the model using variational Bayes, all the variational
methods need to be implemented.
As an example, to create a basic mixture model with a Dirichlet distribution weighting model
(differing with the implemented model by the lack of variational inference methods), the
following code can be used to declare the weighting model,

>>> from pyrichlet import BaseWeight
>>> class BasicDirichletDistribution(BaseWeight):
... def __init__(self, n=1, alpha=1, rng=None):
... super().__init__(rng=rng)
... self.n = n
... self.alpha = np.array([alpha] * self.n, dtype=np.float64)
...
... def random(self, size=None):
... if len(self.d) > 0:
... a_c = np.bincount(self.d)
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... a_c.resize(len(self.alpha), refcheck=False)

... self.w = self._rng.dirichlet(self.alpha + a_c)

... else:

... self.w = self._rng.dirichlet(self.alpha)

... return self.w

...

... def complete(self, size=None):

... super().complete(size)

... if len(self.w) == 0:

... self.random()

... return self.w

and then use it to define a mixture model class,

>>> from pyrichlet.mixture_models._base import BaseGaussianMixture
>>> class BasicDirichletDistributionMixture(BaseGaussianMixture):
>>> def __init__(self, *, n=1, alpha=1, rng=None, **kwargs):
... weight_model = BasicDirichletDistribution(n=n, alpha=alpha,
... rng=rng)
... self.n = n
... super().__init__(weight_model=weight_model, rng=rng,
... **kwargs)

After defining BasicDirichletDistributionMixture, this new class can be used as any
other weighting model:

>>> mixture = BasicDirichletDistributionMixture(n=5)

This particular custom class can be fitted using Gibbs sampling via fit_gibbs, but will throw
a NotImplementedError if we try to fit its variational distribution.

4. Usage
To illustrate how to use pyrichlet, we will use the palmerpenguins dataset described in Horst,
Hill, and Gorman (2022) and originally published in Gorman, Williams, and Fraser (2014),
consisting on data of 344 male and female Pygoscelis penguins from three islands in the Palmer
Archipelago, Antarctica, 342 of which have bill, flipper and body mass measurements.
We will start by fitting a Beta in Beta process mixture using a Gibbs sampler, then estimate
the MAP density in the data bounding region, cluster the observed data points, and finally
produce a scatter plot colored by group and with an overlay of each component’s density
contour.
Firstly we need to import our package, pyrichlet, as well as numpy for result repeatability by
creating a random generator with a set seed. The helper function load_penguins is used for
convenience to load the data.

>>> import pyrichlet
>>> import numpy as np
>>> y = pyrichlet.utils.load_penguins()[0]
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Figure 1: Scatter plot of the palmerpenguins dataset colored by MAP estimated density.

then we initialize the chosen model (BetaInBetaMixture in this case) with its hyperparam-
eters and pass our database to the fitting function,

>>> mixture = pyrichlet.BetaInBetaMixture(x=0.5, rng=0)
>>> mixture.fit_gibbs(y, init_groups=3)

After having fitted the model we can now do density estimation and clustering.

4.1. Density estimation

If we call the method gibbs_map_density() without arguments, we will get the estimation
at each location of the database, otherwise we would pass a list of 4-dimensional arrays at
which the density is to be estimated. After getting the MAP density, we can visualize it using
a scatter plot from the matplotlib package (Hunter 2007) for the first and last variables,
bill_length_mm and body_mass_g, and color each point with its corresponding density as
shown in Figure 1.

>>> import matplotlib.pyplot as plt
>>> density = mixture.gibbs_map_density()
>>> plt.scatter(y.iloc[:, 0], y.iloc[:, 3], c=density)
>>> cbar = plt.colorbar()
>>> plt.clim(0, density.max() / 1.5)
>>> cbar.set_label('density')
>>> plt.xlabel(y.columns[0])
>>> plt.ylabel(y.columns[3])
>>> plt.show()
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Figure 2: Scatter plot of the projected, Gibbs fitted MAP density for the variables
bill_length_mm and body_mass_g.

Using the class variable map_sim_params we can calculate the MAP projected bivariate den-
sity for bill_length_mm and body_mass_g, which is a bivariate normal mixture with the
original weighting structure but projected components, as shown in Figure 2, where we can
see that, for this projection, there is an overlapping region between the lower left and upper
right components,

>>> from scipy.stats import multivariate_normal
>>> XY = np.mgrid[30:60:0.375, 2500:6500:50]
>>> y_space = XY.reshape(2, -1).T
>>> w = mixture.map_sim_params['w']
>>> theta = mixture.map_sim_params['theta']
>>> density = []
>>> for j in range(len(w)):
... density.append(
... multivariate_normal.pdf(y_space,
... theta[j][0][[0, 3]],
... theta[j][1][:, [0, 3]][[0, 3], :],
... 1))
>>> density = w @ density
>>> plt.scatter(y_space[:, 0], y_space[:, 1], c=density)
>>> cbar = plt.colorbar()
>>> plt.xlabel(y.columns[0])
>>> plt.ylabel(y.columns[3])
>>> plt.show()
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Figure 3: Scatter plot of the palmerpenguins dataset colored by MAP clustering and sized
by assignation uncertainty.

4.2. Clustering

We can use the previously fitted object mixture to get the MAP clustering and its respective
assignation uncertainties, P(di ̸= j | w∗

s, θ∗
s), which serves to measure the probability of having

an assignation different to the one given to the i-th observation. We plot a scatter colored
by the respective clustering with size based on the uncertainty in Figure 3. The biggest
points are those where there is not as much confidence in its assignation as with other points,
and we can see that the overlapping density discussed previously does not pose a challenge
when trying to assign the observed points, but a seemingly separate region between the lower
components does.

>>> group, uncertainty = mixture.gibbs_map_cluster(y, full=True)
>>> order = np.argsort(-uncertainty)
>>> plt.scatter(y.iloc[:, 0], y.iloc[:, 3], c=group,
... s=5000 * (0.01 + uncertainty))
>>> plt.xlabel(y.columns[0])
>>> plt.ylabel(y.columns[3])
>>> plt.show()

By calling the plotting method gibbs_map_pairplot we can get a summary as a matrix of
plots, with the diagonal filled with plots of the corresponding marginalized density as well as
its decomposition in Gaussian components; and the off diagonal with the pairwise projections
consisting of a scatter plot colored by cluster and a 95% bivariate Gaussian level curve for
each displayed component. This is shown in Figure 4.

>>> mixture.gibbs_map_pairplot()
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Figure 4: Pair plot of the palmerpenguins dataset using the Gibbs fitted MAP clustering
and projected densities.

>>> plt.show()

It is important to emphasize that the estimated density shown at each diagonal plot is the
marginalization of each component in the estimated MAP distribution given by Equation 10
and scaled by their respective weighting.

4.3. Package comparison and running times

To see how pyrichlet compares to other packages, we have computed the running times and
clustering results for the palmerpenguins dataset as a benchmark.
All the weighting models of pyrichlet have been included in the comparison as well as most
of the packages showed in Table 1, with the exception of the R package DPpackage and the
Python package Mixture-Models due to technical difficulties on their installation, while the
package BayesMix was run only through its Python wrapper. This comparison uses the default
specifications of each library. The running times using the Gibbs sampling fitting method are
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Figure 5: Mutual information score and running times of all weighting models implemented
in pyrichlet and several other packages, fitted against the palmerpenguins dataset. The nine
leftmost methods are the ones included in pyrichlet and correspond to the different weighting
structures fitted via Gibbs sampling.
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Figure 6: Mutual information score and running times of a subset of the weighting models
implemented in pyrichlet and several other packages that also implement the variational
fitting method, fitted against the palmerpenguins dataset. The six leftmost methods are the
ones included in pyrichlet that implement a variational fitting.
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shown in Figure 5 together with the mutual information score (see Shannon 1948) against
the classification given in the palmerpenguins dataset. For the weighting models that have a
variational fitting implementation, their running times and mutual information score can be
seen in Figure 6. The acronyms used in Figure 5 and Figure 6 stand for Dirichlet distribution
mixture (DDM), Dirichlet process mixutre (DPM), Pitman-Yor mixture (PYM), geometric
process mixture (GPM), beta in Dirichlet mixture (BIDM), beta in beta mixture (BIBM), beta
binomial mixture (BBM), equal weighted mixture (EWM) and frequency weighted mixture
(FWM).

5. Final remarks
We have introduced the Python package pyrichlet which introduces several Bayesian non
parametric models, some of which introduced in recent years. Part of the strengths of this
software is the ability to fit arbitrary database densities with greater flexibility compared to
more traditional methods like kernel density estimation. The memory usage scalability of the
implemented fitting methods is proportional to that of the k-means algorithm with respect
to the database size, but a major pitfall (inherent to model based approaches) is the impact
of the curse of dimensionality, particularly in the Gibbs sampling method, where the number
of steps must be adjusted proportionally.

Computational details
The results shown in this paper were obtained using Python 3.10.9 with the pyrichlet 0.0.9
package on an Intel i5-9300H CPU @ 2.40GHz processor. The pyrichlet package is available
in the Python Package Index (PyPI) at https://pypi.org/project/pyrichlet/.

Acknowledgments
The authors gratefully acknowledge the support of PAPIIT grants IN100823 and IA101124.
The first author was also supported by a CONAHCYT PhD scholarship.

References

Beraha M, Guindani B, Gianella M, Guglielmi A (2023a). BayesMixPy: A Python Interface to
BayesMix. URL https://github.com/bayesmix-dev/bayesmix/tree/v0.2.0/python.

Beraha M, Guindani B, Gianella M, Guglielmi A (2023b). BayesMixR: An R Interface to
BayesMix. URL https://github.com/bayesmix-dev/bayesmix/tree/v0.2.0/R.

Beraha M, Guindani B, Gianella M, Guglielmi A (2025). “BayesMix: Bayesian Mixture
Models in C++.” Journal of Statistical Software, 112(9), 1–41. doi:10.18637/jss.v112.
i09.

Bishop CM (2006). Pattern Recognition and Machine Learning. Springer-Verlag.

https://pypi.org/project/pyrichlet/
https://github.com/bayesmix-dev/bayesmix/tree/v0.2.0/python
https://github.com/bayesmix-dev/bayesmix/tree/v0.2.0/R
https://doi.org/10.18637/jss.v112.i09
https://doi.org/10.18637/jss.v112.i09


Journal of Statistical Software 25

Bissiri PG, Ongaro A (2014). “On the Topological Support of Species Sampling Priors.”
Electronic Journal of Statistics, 8(1). doi:10.1214/14-ejs912.

Blackwell D, MacQueen JB (1973). “Ferguson Distributions via Polya Urn Schemes.” The
Annals of Statistics, 1(2), 353–355. doi:10.1214/aos/1176342372.

Blei DM, Jordan MI (2006). “Variational Inference for Dirichlet Process Mixtures.” Bayesian
Analysis, 1(1), 121–143. doi:10.1214/06-ba104.

Canale A, Corradin R, Nipoti B (2022). “Importance Conditional Sampling for Pitman-Yor
Mixtures.” Statistics and Computing, 32(3), 40. doi:10.1007/s11222-022-10096-0.

Corradin R, Canale A, Nipoti B (2021). “BNPmix: An R Package for Bayesian Nonparametric
Modeling via Pitman-Yor Mixtures.” Journal of Statistical Software, 100(15), 1–33. doi:
10.18637/jss.v100.i15.

Escobar MD, West M (1995). “Bayesian Density Estimation and Inference Using Mix-
tures.” Journal of the American Statistical Association, 90(430), 577–588. doi:10.1080/
01621459.1995.10476550.

Ferguson TS (1973). “A Bayesian Analysis of Some Nonparametric Problems.” The Annals
of Statistics, 1(2). doi:10.1214/aos/1176342360.

Ferguson TS (1983). “Bayesian Density Estimation by Mixtures of Normal Distributions.” In
Recent Advances in Statistics, pp. 287–302. Elsevier. doi:10.1016/b978-0-12-589320-6.
50018-6.

Fuentes-García R, Mena RH, Walker SG (2010). “A New Bayesian Nonparametric Mixture
Model.” Communications in Statistics – Simulation and Computation, 39(4), 669–682.
doi:10.1080/03610910903580963.

Gelfand AE, Kottas A (2002). “A Computational Approach for Full Nonparametric Bayesian
Inference under Dirichlet Process Mixture Models.” Journal of Computational and Graph-
ical Statistics, 11(2), 289–305. doi:10.1198/106186002760180518.

Gil-Leyva MF, Mena RH (2021). “Stick-Breaking Processes with Exchangeable Length
Variables.” Journal of the American Statistical Association, 0(0), 1–14. doi:10.1080/
01621459.2021.1941054.

Gil–Leyva MF, Mena RH, Nicoleris T (2020). “Beta-Binomial Stick-Breaking Non-Parametric
Prior.” Electronic Journal of Statistics, 14(1). doi:10.1214/20-ejs1694.

Gorman KB, Williams TD, Fraser WR (2014). “Ecological Sexual Dimorphism and Environ-
mental Variability within a Community of Antarctic Penguins (Genus Pygoscelis).” PLOS
One, 9(3), e90081. doi:10.1371/journal.pone.0090081.

Harris CR, Millman KJ, Van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser
E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M,
Haldane A, del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy
T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE (2020). “Array Programming with
NumPy.” Nature, 585(7825), 357–362. doi:10.1038/s41586-020-2649-2.

https://doi.org/10.1214/14-ejs912
https://doi.org/10.1214/aos/1176342372
https://doi.org/10.1214/06-ba104
https://doi.org/10.1007/s11222-022-10096-0
https://doi.org/10.18637/jss.v100.i15
https://doi.org/10.18637/jss.v100.i15
https://doi.org/10.1080/01621459.1995.10476550
https://doi.org/10.1080/01621459.1995.10476550
https://doi.org/10.1214/aos/1176342360
https://doi.org/10.1016/b978-0-12-589320-6.50018-6
https://doi.org/10.1016/b978-0-12-589320-6.50018-6
https://doi.org/10.1080/03610910903580963
https://doi.org/10.1198/106186002760180518
https://doi.org/10.1080/01621459.2021.1941054
https://doi.org/10.1080/01621459.2021.1941054
https://doi.org/10.1214/20-ejs1694
https://doi.org/10.1371/journal.pone.0090081
https://doi.org/10.1038/s41586-020-2649-2


26 pyrichlet: Density Estimation and Clustering in Python

Hjort N, Holmes C, Müller P, Walker SG (2010). Bayesian Nonparametrics. Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press. doi:
10.1017/cbo9780511802478.

Horst AM, Hill AP, Gorman KB (2022). palmerpenguins: Palmer Archipelago (Antarctica)
Penguin Data. doi:10.32614/CRAN.package.palmerpenguins. R package version 0.1.1.

Hunter JD (2007). “matplotlib: A 2D Graphics Environment.” Computing in Science &
Engineering, 9(3), 90–95. doi:10.1109/mcse.2007.55.

Ishwaran H, James LF (2000). “Approximate Dirichlet Process Computing in Finite Normal
Mixtures: Smoothing and Prior Information.” Journal of Computational and Graphical
Statistics, 11, 508–532. doi:10.1198/106186002411.

Ishwaran H, James LF (2001). “Gibbs Sampling Methods for Stick-Breaking Priors.”
Journal of the American Statistical Association, 96(453), 161–173. doi:10.1198/
016214501750332758.

Jara A, Hanson T, Quintana F, Mueller P, Rosner G (2011). DPpackage: Bayesian Semi-
And Nonparametric Modeling in R. doi:10.32614/CRAN.package.DPpackage. R package
version 1.1-7.

Jordan MI, Ghahramani Z, Jaakkola TS, Saul LK (1999). “An Introduction to Variational
Methods for Graphical Models.” Machine Learning, 37(2), 183–233. doi:10.1023/a:
1007665907178.

Kalli M, Griffin JE, Walker SG (2011). “Slice Sampling Mixture Models.” Statistics and
Computing, 21(1), 93–105. doi:10.1007/s11222-009-9150-y.

Kasa SR (2022). Mixture-Models: A Python Library for Fitting Mixture Models Using Gra-
dient Based Inference. Python package version 0.0.7, URL https://pypi.org/project/
Mixture-Models.

Kasa SR, Rajan V (2020). “Model-Based Clustering Using Automatic Differentiation: Con-
fronting Misspecification and High-Dimensional Data.” arXiv 2007.12786, arXiv.org E-
Print Archive. doi:10.48550/arXiv.2007.12786.

Kullback S, Leibler RA (1951). “On Information and Sufficiency.” The Annals of Mathematical
Statistics, 22(1), 79–86. doi:10.1214/aoms/1177729694.

Liverani S, Hastie DI, Azizi L, Papathomas M, Richardson S (2015). “PReMiuM: An R
Package for Profile Regression Mixture Models Using Dirichlet Processes.” Journal of
Statistical Software, 64(7), 1–30. doi:10.18637/jss.v064.i07.

Lo AY (1984). “On a Class of Bayesian Nonparametric Estimates: I. Density Estimates.” The
Annals of Statistics, 12(1), 351–357. doi:10.1214/aos/1176346412.

McKenzie P, Alder M (1994). “Selecting the Optimal Number of Components for a Gaussian
Mixture Model.” In Proceedings of 1994 IEEE International Symposium on Information
Theory, pp. 393–. doi:10.1109/isit.1994.394626.

https://doi.org/10.1017/cbo9780511802478
https://doi.org/10.1017/cbo9780511802478
https://doi.org/10.32614/CRAN.package.palmerpenguins
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1198/106186002411
https://doi.org/10.1198/016214501750332758
https://doi.org/10.1198/016214501750332758
https://doi.org/10.32614/CRAN.package.DPpackage
https://doi.org/10.1023/a:1007665907178
https://doi.org/10.1023/a:1007665907178
https://doi.org/10.1007/s11222-009-9150-y
https://pypi.org/project/Mixture-Models
https://pypi.org/project/Mixture-Models
https://doi.org/10.48550/arXiv.2007.12786
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.18637/jss.v064.i07
https://doi.org/10.1214/aos/1176346412
https://doi.org/10.1109/isit.1994.394626


Journal of Statistical Software 27

McKinney W (2010). “Data Structures for Statistical Computing in Python.” In S Van der
Walt, J Millman (eds.), Proceedings of the 9th Python in Science Conference, pp. 56–61.
doi:10.25080/majora-92bf1922-00a.

Miller JW, Harrison MT (2014). “Inconsistency of Pitman-Yor Process Mixtures for the
Number of Components.” Journal of Machine Learning Research, 15(96), 3333–3370. doi:
10.1214/14-ba863.

Neal RM (2000). “Markov Chain Sampling Methods for Dirichlet Process Mixture Mod-
els.” Journal of Computational and Graphical Statistics, 9(2), 249–265. doi:10.1080/
10618600.2000.10474879.

Opper M, Saad D (2001). Advanced Mean Field Methods: Theory and Practice. Neural
Information Processing Series. MIT Press. ISBN 9780262150545.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pretten-
hofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot
M, Duchesnay E (2011). “scikit-Learn: Machine Learning in Python.” Journal of Machine
Learning Research, 12, 2825–2830. doi:10.5555/1953048.2078195.

Pernkopf F, Bouchaffra D (2005). “Genetic-Based EM Algorithm for Learning Gaussian
Mixture Models.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 27,
1344–1348. doi:10.1109/tpami.2005.162.

Pitman J (1996). “Some Developments of the Blackwell-Macqueen URN Scheme.” Lecture
Notes-Monograph Series, 30, 245–267. doi:10.1214/lnms/1215453576.

Pitman J (2006). Combinatorial Stochastic Processes, volume 1875 of École d’Été de Proba-
bilités de Saint-Flour. Springer-Verlag, New York. doi:10.1007/b11601500.

Pitman J, Yor M (1997). “The Two-Parameter Poisson-Dirichlet Distribution Derived from
a Stable Subordinator.” The Annals of Probability, 25(2), 855–900. doi:10.1214/aop/
1024404422.

Regazzini E, Lijoi A, Prünster I (2003). “Distributional Results for Means of Normalized
Random Measures with Independent Increments.” The Annals of Statistics, 31(2), 560–
585. doi:10.1214/aos/1051027881.

Ross GJ, Markwick D (2020). dirichletprocess: Build Dirichlet Process Objects for Bayesian
Modelling. doi:10.32614/CRAN.package.dirichletprocess. R package version 0.4.0.

Rossi P (2019). bayesm: Bayesian Inference for Marketing/Micro-Econometrics. doi:10.
32614/CRAN.package.bayesm. R package version 3.1-4.

Scrucca L, Fop M, Murphy TB, Raftery AE (2016). “mclust 5: Clustering, Classification and
Density Estimation Using Gaussian Finite Mixture Models.” The R Journal, 8(1), 289–317.
doi:10.32614/rj-2016-021.

Selva F (2020). Dirichlet Geometric Process. Master’s thesis, UNAM.

Sethuraman J (1994). “A Constructive Definition of Dirichlet Priors.” Statistica Sinica, 4(2),
639–650. doi:10.21236/ada238689.

https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.1214/14-ba863
https://doi.org/10.1214/14-ba863
https://doi.org/10.1080/10618600.2000.10474879
https://doi.org/10.1080/10618600.2000.10474879
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1109/tpami.2005.162
https://doi.org/10.1214/lnms/1215453576
https://doi.org/10.1007/b11601500
https://doi.org/10.1214/aop/1024404422
https://doi.org/10.1214/aop/1024404422
https://doi.org/10.1214/aos/1051027881
https://doi.org/10.32614/CRAN.package.dirichletprocess
https://doi.org/10.32614/CRAN.package.bayesm
https://doi.org/10.32614/CRAN.package.bayesm
https://doi.org/10.32614/rj-2016-021
https://doi.org/10.21236/ada238689


28 pyrichlet: Density Estimation and Clustering in Python

Shannon CE (1948). “A Mathematical Theory of Communication.” Bell System Technical
Journal, 27, 623–656. doi:10.1145/584091.584093.

Vila JP, Schniter P (2013). “Expectation-Maximization Gaussian-Mixture Approximate
Message Passing.” IEEE Transactions on Signal Processing, 61, 4658–4672. doi:
10.1109/tsp.2013.2272287.

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski
E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ,
Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore
EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris
CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy 10 Contributors
(2020). “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.” Nature
Methods, 17, 261–272. doi:10.1038/s41592-019-0686-2.

Walker SG (2007). “Sampling the Dirichlet Mixture Model with Slices.” Commu-
nications in Statistics – Simulation and Computation, 36(1), 45–54. doi:10.1080/
03610910601096262.

Xu L, Jordan MI (1996). “On Convergence Properties of the EM Algorithm for Gaussian
Mixtures.” Neural Computation, 8(1), 129–151. doi:10.1162/neco.1996.8.1.129.

https://doi.org/10.1145/584091.584093
https://doi.org/10.1109/tsp.2013.2272287
https://doi.org/10.1109/tsp.2013.2272287
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1080/03610910601096262
https://doi.org/10.1080/03610910601096262
https://doi.org/10.1162/neco.1996.8.1.129


Journal of Statistical Software 29

A. Weighting structures’ conditional distributions

Dirichlet distribution

For the Dirichlet distribution, the full conditional distribution of w without using slices is

f(w | . . .) ∝ Dirichlet(w | α)
k∏

j=1
w

aj

j

∝ Dirichlet(w | α∗),

with α∗ = {α1 + a1, . . . , αn + ak}.

Dirichlet process

The u-collapsed conditional distribution of v for the Dirichlet process can be written as

f(v | . . . \ u) ∝
∏
j≥1

Beta(vj | 1, α)vaj

j (1− vj)bj

∝
∏
j≥1

Beta(vj | 1 + aj , α + bj).

Pitman-Yor process

In a Pitman-Yor process, the u-collapsed conditional distribution of v is given by

f(v | . . . \ u) ∝
∏
j≥1

Beta(vj | 1− d, α + jd)vaj

j (1− vj)bj

∝
∏
j≥1

Beta(vj | 1− d + aj , α + jd + bj).

Geometric process

A geometric process can be updated with the u-collapsed conditional distribution of p,

f(p | . . . \ u) ∝ Beta(p | a, b)
N∏

i=1
wdi

= Beta(p | a, b)
N∏

i=1
p(1− p)di−1

∝ Beta(p | a + N, b +∑N
i=1(di − 1)).

Beta in Dirichlet process

Regarding the sticks of a beta in Dirichlet process, they can be updated with the full condi-
tional distribution for vj , which holds

f(vj | v−j , . . . \ u) ∝ f(vj | v−j)1(cj < vj < c′
j),
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which corresponds to the truncation of the posterior distribution of a Dirichlet Process after
observing v−j .

Beta in beta process

For the beta in beta process, the u collapsed conditional distribution of v is

f(v | . . . \ u) ∝
∏
j≥1

Beta
(

vj

∣∣∣∣1 + p
x

1− x
, α + (1− p) x

1− x

)
v

aj

j (1− vj)bj

∝
∏
j≥1

Beta
(

vj

∣∣∣∣1 + p
x

1− x
+ aj , α + (1− p) x

1− x
+ bj

)
,

and the conditional distribution of p collapsed for all vj with j > max di follows the propor-
tionality

f(p | v1, . . . , vmax di
) ∝ Beta (p |a, b)

max di∏
j=1

Beta
(

vj

∣∣∣∣1 + p
x

1− x
, α + (1− p) x

1− x

)
,

which is not a closed distribution but can be sampled numerically, for example via inverse
sampling.

Beta binomial process

The beta Binomial process has a u collapsed joint conditional distribution for the variables
(v, {Bj}j≥1) given by

f(v, {Bj}j≥1 | . . . \ u) ∝Beta(v0 | 1, α)
×
∏
j≥1

Binomial(Bj | n, vj−1)

× Beta(vj | 1 + Bj , α + n−Bj)vaj

j (1− vj)bj .

By marginalizing it can be seen that the u collapsed conditional distribution of v holds

f(v | . . . \ u) ∝Beta(v0 | 1, α)vB1
0 (1− v0)n−B1

×
∏
j≥1

Beta(vj | 1 + Bj , α + n−Bj)vaj+Bj+1
j (1− vj)bj+n−Bj+1

∝Beta(v0 | 1 + B1, α + n−B1)
×
∏
j≥1

Beta(vj | 1 + Bj + Bj+1, α + 2n−Bj −Bj+1).

Finally, by removing the proportionally constant terms to the joint distribution, the full
conditional distribution for Bj is obtained,

f(Bj | . . .) ∝Beta(vj | 1 + Bj , α + n−Bj)Binomial(Bj | n, vj−1),

which is a discrete finite distribution.
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B. Weighting structures’ variational distributions

Dirichlet distribution

In a Dirichlet distribution, the optimal variational distribution for w holds

g(w) ∝ Dirichlet(w | α)
k∏

j=1
w

a′
j

j

∝ Dirichlet(w | α∗),

with α∗ = {α1 + a′
1, . . . , αn + a′

k}.

Dirichlet process

A Dirichlet process has an optimal variational distribution for v given by

g(v) ∝
k∏

j=1
Beta(vj | 1, α)va′

j

j (1− vj)b′
j

∝
k∏

j=1
Beta(vj | 1 + a′

j , α + b′
j).

Pitman-Yor process

For the Pitman-Yor process, the optimal variational distribution for v is

g(v) ∝
k∏

j=1
Beta(vj | 1− d, α + jd)va′

j

j (1− vj)b′
j

∝
k∏

j=1
Beta(vj | 1− d + a′

j , α + jd + b′
j).

Geometric process

For the Geometric process, the optimal variational distribution for p is

g(p) ∝ Beta(p | a, b)
k∏

j=1
w

a′
j

j

= Beta(p | a, b)
k∏

j=1
pa′

j (1− p)(j−1)a′
j

∝ Beta
(
p
∣∣∣a +∑N

i=1 a′
j , b +∑N

i=1 a′
j(j − 1)

)
= Beta

(
p
∣∣∣a + N, b +∑N

i=1 a′
j(j − 1)

)
.
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C. Platter representations

Dirichlet distribution

wα
Dir

Figure 7: Dirichlet distribution weighting structure plate representation.
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Figure 8: Dirichlet process weighting structure plate representation.

Pitman-Yor process
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Figure 9: Pitman-Yor process weighting structure plate representation.
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Figure 10: Geometric process weighting structure plate representation.
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Beta in Dirichlet process
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Figure 11: Beta In Dirichlet process weighting structure plate representation.
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Figure 12: Beta In beta process weighting structure plate representation.
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Figure 13: Beta binomial process weighting structure plate representation.

D. Package comparison code

Here we present the R code used to fit the palmerspenguins dataset using each of the
discussed packages followed by the Python code needed to fit the corresponding packages and
the parsing and plotting of results.
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R code

R> install.packages(c("palmerpenguins", "BNPmix", "mclust",
+ "dirichletprocess", "bayesm", "PReMiuM"),
+ repos = "https://cran.r-project.org")
R> setwd("temp")
R> set.seed(1)
R> library(palmerpenguins)
R> df <- penguins[complete.cases(penguins[3:6]), 3:6]
R> library(BNPmix)
R> bnpmix_time <- system.time({
+ est_model <- PYdensity(
+ y = as.matrix(sweep(df, 2, colMeans(df))),
+ mcmc = list(niter = 1000, nburn = 100, nupd = 1000))
+ out <- partition(est_model)})
R> bnpmix_clustering <- out$partitions[3,]
R> library(mclust)
R> mclust_time <- system.time(
+ out <- Mclust(df, modelNames="VVV"))
R> mclust_clustering <- out$classification
R> library(dirichletprocess)
R> dirichletprocess_time <- system.time({
+ out <- DirichletProcessMvnormal(scale(df))
+ dpCluster <- Fit(out, 100, progressBar = F)})
R> dirichletprocess_clustering <- dpCluster$clusterLabels
R> library(bayesm)
R> bayesm_time <- system.time({
R> out <- rnmixGibbs(Data = list(y = data.matrix(df)),
+ Prior = list(ncomp = 3, a = c(rep(1, 3))),
+ Mcmc = list(R = 1000, keep = 1))
R> outclusterMix <- clusterMix(out$nmix$zdraw[100:1000,])})
R> bayesm_clustering <- outclusterMix$clustera
R> library(PReMiuM)
R> premium_time <- system.time({
+ runInfoObj <- profRegr(covNames = colnames(df), data = df,
+ excludeY = TRUE, xModel = "Normal", seed = 1)
+ disSimObj <- calcDissimilarityMatrix(runInfoObj)
+ out <- calcOptimalClustering(disSimObj, maxNClusters = 3)})
R> premium_clustering <- out$clustering
R> df_clusters <- data.frame(
+ BNPmix = bnpmix_clustering,
+ mclust = mclust_clustering,
+ dirichletprocess = dirichletprocess_clustering,
+ bayesm = bayesm_clustering,
+ PReMiuM = premium_clustering)
R> df_times <- data.frame(
+ BNPmix = bnpmix_time,
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+ mclust = mclust_time,
+ dirichletprocess = dirichletprocess_time,
+ bayesm = bayesm_time,
+ PReMiuM = premium_time)
R> write.csv(df_clusters, "R_clusters.csv")
R> write.csv(df_times, "R_times.csv")

Python code

>>> import time
>>> def get_time_and_clustering(model):
... start_time = time.time()
... model.fit_gibbs(y, init_groups=3)
... group = model.gibbs_map_cluster(y)
... end_time = time.time()
... return end_time - start_time, group
>>> times_and_clusters = {
... "DDM": get_time_and_clustering(
... pyrichlet.mixture_models.DirichletDistributionMixture(n=3, rng=rng)),
... "DPM": get_time_and_clustering(
... pyrichlet.mixture_models.DirichletProcessMixture(rng=rng)),
... "PYM": get_time_and_clustering(
... pyrichlet.mixture_models.PitmanYorMixture(pyd=0.1, rng=rng)),
... "GPM": get_time_and_clustering(
... pyrichlet.mixture_models.GeometricProcessMixture(rng=rng)),
... "BIDM": get_time_and_clustering(
... pyrichlet.mixture_models.BetaInDirichletMixture(a=0.1, rng=rng)),
... "BIBM": get_time_and_clustering(
... pyrichlet.mixture_models.BetaInBetaMixture(rng=rng)),
... "BBM": get_time_and_clustering(
... pyrichlet.mixture_models.BetaBinomialMixture(rng=rng)),
... "EWM": get_time_and_clustering(
... pyrichlet.mixture_models.EqualWeightedMixture(n=3, rng=rng)),
... "FWM": get_time_and_clustering(
... pyrichlet.mixture_models.FrequencyWeightedMixture(n=3, rng=rng))
... }
>>> from sklearn.mixture import BayesianGaussianMixture
>>> start_time = time.time()
>>> bgm = BayesianGaussianMixture(n_components=3, max_iter=1000)
>>> sklearn_clustering = bgm.fit_predict(y)
>>> end_time = time.time()
>>> times_and_clusters["sklearn"] = (end_time - start_time,
... sklearn_clustering)
>>> from mixes import GMM
>>> start_time = time.time()
>>> gmm = GMM(3, num_iter=1000)
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>>> gmm.fit(y)
>>> mixes_clustering = gmm.predict(y)
>>> end_time = time.time()
>>> times_and_clusters["mixes"] = (end_time - start_time, mixes_clustering)
>>> from bayesmixpy import run_mcmc
>>> dp_params = """
... fixed_value {
... totalmass: 1.0
... }
... """
>>> g0_params = f"""
... fixed_values {{
... mean {{
... size: {y.shape[1]}"""
>>> for x in y.mean():
... g0_params += f"""
... data: {x}"""
>>> g0_params += """
... }
... var_scaling: 0.01
... deg_free: 5
... scale {
... rows: 4
... cols: 4
... data: 1.0
... data: 0.0
... data: 0.0
... data: 0.0
... data: 0.0
... data: 1.0
... data: 0.0
... data: 0.0
... data: 0.0
... data: 0.0
... data: 1.0
... data: 0.0
... data: 0.0
... data: 0.0
... data: 0.0
... data: 1.0
... rowmajor: false
... }
... }
... """
>>> neal2_algo = """
... algo_id: "Neal2"
... rng_seed: 1
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... iterations: 1000

... burnin: 100

... init_num_clusters: 1

... """
>>> start_time = time.time()
>>> out = run_mcmc(
... "NNW", "DP", (y - y.mean()).to_numpy(), g0_params, dp_params,
... neal2_algo, [], return_clusters=False, return_num_clusters=False,
... return_best_clus=True)
>>> end_time = time.time()
>>> bayesmix_clustering = out[3]
>>> times_and_clusters["bayesmix"] = (end_time - start_time,
... bayesmix_clustering)
>>> import subprocess
>>> import pandas as pd
>>> subprocess.call("./article.R")
>>> r_clusters = pd.read_csv('temp/R_clusters.csv', index_col=0)
>>> r_times = pd.read_csv('temp/R_times.csv', index_col=0).loc['elapsed']
>>> times_and_clusters |= {
... x: (y, z) for x, y, z in
... zip(r_times.index, r_times.values, r_clusters.T.values)
... }
>>> from sklearn.metrics import mutual_info_score
>>> info_scores = [
... mutual_info_score(pyrichlet.utils.load_penguins()[1], x[1]) for x in
... times_and_clusters.values()]
>>> df_times_scores = pd.DataFrame(
... {'Mutual Information Score': info_scores,
... 'Running Time': [x[0] for x in times_and_clusters.values()]},
... index=times_and_clusters.keys())
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax2 = ax.twinx()
>>> df_times_scores['Mutual Information Score'].plot(
... kind='bar', color='#1f77b4', ax=ax, width=0.3, position=1, legend=True)
>>> df_times_scores['Running Time'].plot(
... kind='bar', color='#ff7f0e', ax=ax2, width=0.3, position=0, legend=True,
... logy=True)
>>> ax.set_ylabel('Score')
>>> ax.legend(loc='upper left')
>>> ax2.set_ylabel('Seconds')
>>> ax.set_ylim(0, 1.19)
>>> ax2.set_ylim(0.01, 150)
>>> plt.xlim(-1, 17)
>>> plt.tight_layout()
>>> plt.savefig("all_scores.pdf")
>>> plt.show()
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>>> def var_get_time_and_clustering(model):
... start_time = time.time()
... model.fit_variational(y, n_groups=3)
... group = model.var_map_cluster(y)
... end_time = time.time()
... return end_time - start_time, group
>>> var_times_and_clusters = {
... "DDM": var_get_time_and_clustering(
... pyrichlet.mixture_models.DirichletDistributionMixture(n=3, rng=rng)),
... "DPM": var_get_time_and_clustering(
... pyrichlet.mixture_models.DirichletProcessMixture(rng=rng)),
... "PYM": var_get_time_and_clustering(
... pyrichlet.mixture_models.PitmanYorMixture(pyd=0.1, rng=rng)),
... "GPM": var_get_time_and_clustering(
... pyrichlet.mixture_models.GeometricProcessMixture(rng=rng)),
... "EWM": var_get_time_and_clustering(
... pyrichlet.mixture_models.EqualWeightedMixture(n=3, rng=rng)),
... "FWM": var_get_time_and_clustering(
... pyrichlet.mixture_models.FrequencyWeightedMixture(n=3, rng=rng))
... }
>>> for x in ['sklearn', 'mixes', 'mclust']:
... var_times_and_clusters[x] = times_and_clusters[x]
>>> var_info_scores = [
... mutual_info_score(pyrichlet.utils.load_penguins()[1], x[1]) for x in
... var_times_and_clusters.values()]
>>> df_var_times_scores = pd.DataFrame(
... {'Mutual Information Score': var_info_scores,
... 'Running Time': [x[0] for x in var_times_and_clusters.values()]},
... index=var_times_and_clusters.keys())
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax2 = ax.twinx()
>>> df_var_times_scores['Mutual Information Score'].plot(
... kind='bar', color='#1f77b4', ax=ax, width=0.3, position=1, legend=True)
>>> df_var_times_scores['Running Time'].plot(
... kind='bar', color='#ff7f0e', ax=ax2, width=0.3, position=0, legend=True,
... logy=True)
>>> ax.set_ylabel('Score')
>>> ax.legend(loc='upper left')
>>> ax2.set_ylabel('Seconds')
>>> ax.set_ylim(0, 1.19)
>>> ax2.set_ylim(0.01, 15)
>>> plt.xlim(-1, 9)
>>> plt.tight_layout()
>>> plt.savefig("all_var_scores.pdf")
>>> plt.show()
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